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Abstract

A new high-resolution upwind compact scheme is presented and analyzed, along with several previously proposed
schemes, for numerical dispersion-dissipation, anisotropy, phase damping, dispersion relation preservation property
and numerical stability. The schemes are tested on problems of the propagation of a initially discontinuous wave and
of the transport of a sharp scalar cone. A benchmark problem of aeroacoustics is solved with the present scheme, giving
satisfactory resolution. The scheme compares well with the existing schemes for the range of properties considered desir-
able in high resolution schemes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Higher-order finite-difference schemes have gained considerable importance in the direct numerical simula-
tion (DNS) of the Navier–Stokes equations as they are generally more robust and less costly than spectral
methods [1].

In explicit finite-difference schemes, the derivative at a point is specified explicitly in terms of the function val-
ues at that point and its neighbors [2]. Higher-order explicit schemes, however, suffer from cumbersomely large
stencil sizes and are not easily amenable to optimization for superior high wavenumber resolution. They also
necessitate the use of large one-sided boundary stencils, which often bring in numerical instabilities in the com-
putations. Compact schemes [3–6] are less affected by these problems. Compact schemes couple derivatives and
the function values of neighboring points in such a way that a smaller stencil facilitates higher order accuracy as
well as superior numerical properties. Of late, upwind compact schemes have received attention as they tend to be
less prone to numerical instability and aliasing error than central compact scheme in strongly convective flows.

Upwind schemes, both explicit and compact are developed in several ways. In one, dissipation is artificially
added to a central scheme [7–9]. These schemes retain the same stencil as their central counterparts but contain
asymmetric coefficients. In another method, an upwind biased asymmetric stencil is chosen with reference to
the direction of the flow [10–13]. Apart from this, upwinding by the addition of a spatial filtering term [12],
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using a lower-order scheme in order to optimize it [14], combining first and second order derivatives implicitly
in a single equation [15] or using MacCormack-type factorization [16] are some of the other notable
approaches for developing upwind compact schemes.

Fourier analysis of numerical schemes (e.g. Refs. [3,10,17]) are a useful way in which a range of their prop-
erties can be analyzed. The numerical stability of schemes is an issue of paramount importance. This is usually
studied through normal mode analysis, which is referred to as G-K-S stability theory [18,19]. This entails
determining the eigen-values of the error evolution matrix which when multiplied by the previous step solution
error gives the new time-step solution error. Any scheme with even one eigen-value with a positive real part
will be unstable. The advantage of this method is that it takes both boundary and inner schemes into consid-
eration to determine stability.

In compact schemes, optimization can be carried out to enhance the stability of the scheme through the use
of parameters left free after a less than-maximum formal order of accuracy is accepted. Zhong [8] used a free
parameter to achieve an eigen-value spectrum favorable for the stability of a coupled inner-and-boundary
tridiagonal scheme.

In the present work a high resolution upwind compact scheme has been optimized using the degrees of free-
dom available after adding a 5th order dissipation term to a 6th order scheme It has been shown that spatial
filtering added to the central scheme leads to the same upwind scheme. We have also carried out fourier anal-
ysis of several explicit and compact schemes with the aim of comparing various properties such as numerical
dispersion–dissipation, anisotropic error associated with the numerical phase speed, numerical directional
damping, dispersion relation preservation ability and numerical stability in a common framework. The pro-
posed scheme has been tested for problems involving propagation of an initially discontinuous wave and of a
sharp gaussian cone and a benchmark problem of aeroacoustics.

In the next section, fourier analysis of finite difference schemes is briefly outlined. In Section 3, the deriva-
tion of the present scheme is presented, and it is compared with some earlier proposed schemes in terms of the
properties described in Section 2. Section 4 presents results of three numerical tests that are chosen to explore
different aspects of the proposed scheme.

2. The new high resolution upwind compact scheme

Compact schemes can be written in a generic form as
Xl¼N1

l¼�N1

blf
0
jþl ¼

1

h

XM1

l¼�M1

alfjþl; b0 ¼ 1; bl ¼ b�l ð1Þ
where the stencil sizes of the implicit and the explicit parts of the scheme are N = 2N1 + 1 and M = 2M1 + 1,
respectively. Schemes of different order of accuracy can be derived from the above formula using Taylor series
expansion [3]. For instance, with N1 = 2 and M1 = 3 this formula is
bf 0j�2 þ af 0j�1 þ f 0j þ af 0jþ1 þ bf 0jþ2 ¼
1

h
ða�3fj�3 þ a�2fj�2 þ a�1fj�1 þ a0fj þ a1fjþ1 þ a2fjþ2 þ a3fjþ3Þ ð2Þ
A fifth order upwind compact scheme can be formed by adding a 5th order dissipative term to the above
formula, i.e.
bf 0j�2 þ af 0j�1 þ f 0j þ af 0jþ1 þ bf 0jþ2

¼ 1

h
ða�3fj�3 þ a�2fj�2 þ a�1fj�1 þ a0fj þ a1fjþ1 þ a2fjþ2 þ a3fjþ3Þ þ

c
2n!

h2n�1 d2nf
dx2n

����
j

ð3Þ
where c determines the amount of dissipation added.
Upwind compact schemes can also be formed by adding a symmetric filtering term to the asymmetric expli-

cit part of a central compact scheme, i.e.
bf 0i�2 þ af 0i�1 þ f 0i þ af 0iþ1 þ bf 0iþ2 ¼
1

h
a3ðfiþ3 � fi�3Þ þ a2ðfiþ2 � fi�2Þ þ a1ðfiþ1 � fi�1Þ½ �

þ 1

h
b3ðfiþ3 þ fi�3Þ þ b2ðfiþ2 þ fi�2Þ þ b1ðfiþ1 þ fi�1Þ þ b0fi½ � ð4Þ
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In both the above forms there are nine unknown coefficients. The first seven are obtained by matching
terms with the same powers of h, from O(h�1) to O(h5), from both sides of the equation. The remaining two
coefficients are obtained from the modified wave number expression whose imaginary part is forced to match
the exact one at two different scaled wave numbers, i.e.
K iðjhÞ ¼ jh; for jh ¼ 2:5; 2:7
These discrete wave numbers are chosen so that the scheme obtained from it gives a near-optimal dispersion
property. The coefficients thus obtained from Eq. (3) are
a�3 ¼ �0:00559þ 0:0014c; a�2 ¼ �0:25154� 0:0083c; a�1 ¼ �0:6494þ 0:0208c;

a0 ¼ �0:0278c; a ¼ 0:57967; b ¼ 0:0895
ð5Þ
The same coefficients result from Eq. (4) as from (5) with c chosen �1. This shows that the addition of a
symmetric filtering term is equivalent to adding a dissipation term. The value of c = �1 is chosen for all the
results presented below.

2.1. Other schemes

The new upwind compact scheme, from now on termed the ‘‘N’’ scheme, will now be compared with the
previously proposed compact and explicit schemes mentioned below:

(1) Spectral like central compact scheme (SLS)
This scheme was proposed by Lele [3]. This is a 6th order pentadiagonal scheme given by
0:0895ðf 0i�2 þ f 0iþ2Þ þ 0:57967ðf 0i�1 þ f 0iþ1Þ þ f 0i

¼ 1

h
0:00559ðfiþ3 � fi�3Þ þ 0:25154ðfiþ2 � fi�2Þ þ 0:6494ðfiþ1 � fi�1Þ½ �
(2) Optimized upwind compact scheme (Z)
This is a 5th order tridiagonal scheme proposed by Zhong [8]:
25f 0j�1 þ 60f 0j þ 15f 0jþ1 ¼
1

h
� 5

2
fj�2 �

160

3
fj�1 þ 15f j þ 40f jþ1 þ

5

6
fjþ2

� �
(3) Wave number extended explicit scheme (L)
This is a 4th order wavenumber extended upwind biased scheme proposed by Li [10]:
f 0i ¼
1

h
ð�0:055453f i�3 þ 0:3606f i�2 � 1:221201f i�1 þ 0:554534f i þ 0:3894f iþ1 � 0:2788f iþ2Þ
(4) Tam and Webb’s DRP scheme (TW)
Tam and Webb [20] formulated a 4th order explicit scheme with enhanced spectral resolution:
f 0i ¼
1

h
½0:02651995ðfiþ3 � fi�3Þ � 0:18941314ðfiþ2 � fi�2Þ þ 0:79926643ðfiþ1 � fi�1Þ�
(5) A fifth order upwind explicit scheme

This scheme is formed by adding a 5th order dissipation term with a 6th order central scheme and opti-
mizing the diffusion coefficient from the eigenvalue spectrum obtained in the stability analysis.
f 0i ¼
1

h
� 1

40
fi�3 þ

19

120
fi�2 �

7

8
fi�1 þ

1

6
fi þ

5

8
fiþ1 �

1

10
fiþ2 þ

1

120
fiþ3

� �
3. Fourier analysis of finite difference schemes

All the analyses presented here are based on the first order wave equation, given by
ut þ cu0 ¼ 0 ð6Þ
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3.1. Numerical dispersion and dissipation

A solution u(x, t) is represented by a typical fourier mode, i.e.
u ¼ ûjðtÞeijx ð7Þ

where ûj is the Fourier mode of wave number j, and i �

ffiffiffiffiffiffiffi
�1
p

. After exact spatial differentiation
u0 ¼ iðjhÞ ûj

h
eijx ð8Þ
where the wavenumber is scaled by the grid interval h = L/N, where L is the length of the domain and N is the
number of grid intervals. By analogy, the numerical approximation of the derivative can be written as
u0 ¼ KeqðjhÞ ûj

h
eijx ¼ ðKrðjhÞ þ iK iðjhÞÞ ûj

h
eijx ð9Þ
where the equivalent wavenumber, Keq(jh), has real and imaginary parts Kr and Ki respectively. It can easily
be shown that the real part of Keq(jh) tends to amplify/attenuate the corresponding fourier mode while the
imaginary part introduces a phase error. Thus the deviations of the real and imaginary parts of Keq(jh) from
the exact scaled wavenumber can be respectively taken to be the indicators of numerical dissipation and
dispersion.

Fig. 1 shows the imaginary part of the modified wavenumber Ki(jh) for the schemes discussed above. The
straight line marked g is the exact value, while the other curves depict the Keq,i of the various schemes. Clearly
the compact schemes are superior compared to the explicit schemes as they match the exact value over a
greater range of wave numbers. It can be shown that the SLS and the N schemes have the same dispersion
property if c = 0. Fig. 1 shows that even with c = �1 the dispersion is almost identical in the two schemes.
The Z scheme lies between these two schemes and the explicit schemes. The explicit schemes have somewhat
poorer resolution although they are still significantly better than the conventional 2nd(CDS2) and 4th(CDS4)
order central difference scheme which are also shown. The L scheme and the TW schemes have nearly the same
dispersion property.

In Fig. 2, the real part of the modified wavenumber which is the indicator of numerical dissipation is plotted
for different schemes. The center-difference schemes have no dissipation and are not shown. Fig. 2 shows that,
of the two upwind compact schemes, the N scheme has much higher dissipation in the high wavenumber range
compared to the Z scheme, while dissipation is almost the same at lower wavenumbers. The two explicit
schemes have higher dissipation at lower wave numbers compared to the compact schemes, with the L scheme
having considerably higher dissipation compared to the 5U scheme. The N scheme has arguably the best
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Fig. 1. Numerical dispersion of the schemes.
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Fig. 2. Numerical dissipation of the upwind schemes.
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dissipation profile of the dissipative schemes – it has high dissipation at very high wavenumbers, enhancing
numerical stability and reducing aliasing errors, while having low dissipation at lower wavenumbers, enhanc-
ing accuracy.

3.2. Phase speed anisotropy and directional damping

If Eq. (9) is substituted into Eq. (6), we get
1

ûj

dûj

dt
¼ � c�

h
ijh ð10Þ
where c� ¼ c KrðjhÞþiK iðjhÞ
ijh , is the numerical wave speed at which the approximate solution travels, in comparison

to the exact wave speed c.
In 2-D flows, if a wave propagates at an angle h to the x-axis then the spectral representation of its typical

fourier mode is
u ¼ ûjeijs where s ¼ x cos hþ y sin h ð11Þ

and the numerical phase speed becomes
c�

c
¼ Keqðjh cos hÞ cos hþ Keqðjh sin hÞ sin h

iðjhÞ ð12Þ
with a real part
R
c�

c

� �
¼ K iðjh cos hÞ cos hþ K iðjh sin hÞ sin h

jh
ð13Þ
and imaginary part
I
c�

c

� �
¼ �Krðjh cos hÞ cos hþ Krðjh sin hÞ sin h

jh
ð14Þ
The extent to which the real part of the numerical wave speed Rðc�c Þ varies with h is a measure of phase
speed anisotropy, while the imaginary part gives the measure of numerical damping, because the real part
of the modified wavenumber, responsible for the numerical dissipation, is equal to �jhIðc�c Þ.

Fig. 3 shows Rðc�c Þ obtained for the various schemes being studied in polar diagrams. The radial distance of
the curves from the origin corresponds to the magnitude of Rðc�c Þ for that angle. The plots are drawn for five
different wave numbers ð6p

10
; 7p

10
; . . . ; pÞ. At any wavenumber, the exact dispersion property lies on the circle, i.e.
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c�

c ¼ 1. Also, any deviation from a circular form indicates anisotropy for that wavenumber. The plots show
that for the compact schemes anisotropic error only occurs at highest two wave numbers while the explicit
schemes suffer at almost all depicted wave numbers. The SLS and N schemes show similar anisotropic error,
at only the highest wavenumber, while the Z scheme has error even at lower wave numbers. The N scheme
therefore compares with the best of the other schemes on having the least anisotropy in dispersion.

The expression Kr(jh cosh)cosh + Kr(jh sinh)sinh gives a measure of the variation of numerical dissipation
with direction h. In the polar plots of Fig. 4, this quantity is shown in the radial direction versus h. The plots
are drawn for six different wave numbers ðp

6
; p

3
; . . . ; pÞ. The N scheme is similar to the Z scheme with both

showing little anisotropy for j 6 2p/3. However, as dissipation is quite low in both schemes for j 6 5p/6
(see Fig. 4), anisotropy in the dissipation will have little effect in that range. Among the explicit schemes,
5U scheme has relatively higher dissipation at all wave numbers, but shows the least anisotropy. For all
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Fig. 4. Directional numerical damping of the upwind schemes.
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the schemes, the dissipation is maximum when the direction of flow makes an angle p
4

with the coordinate
direction.

3.3. Dispersion relation preservation (DRP) property

A numerical solution of convective problem must also accurately capture the relationship between the
frequency (x) and the wavenumber (j) of fourier modes. For the exact solution of equation (6)
dx
dj
¼ c ð15Þ
where x is the frequency of the mode. If the mode ûðx; jÞeiðjx� xtÞ is inserted into the discretized equation,
the numerical group velocity can also be obtained. Taking the time integration scheme to be Euler explicit, the
discretized form of the wave equation (6) we get
dx
dj
jnumerical ¼ �iceixDt dKeqðjhÞ

dðjhÞ ð16Þ
as opposed to the exact expression obtained in Eq. (15). The real part of dx
dj jnumerical given by
R
dx
dj
jnumerical

� �
¼ c sinðxDtÞ dKrðjhÞ

dðjhÞ þ cosðxDtÞ dK iðjhÞ
dðjhÞ

� �
ð17Þ
characterizes the dispersion relation preservation (DRP) property of the scheme and shows how the simulated
waves of various frequency-wavenumber combinations travel in the numerical solution. A superior numerical
technique will have a DRP relation which is close to the exact one, Eq. (15), over a large region in (xDt � jh)
plane.

The DRP property of the various schemes being studied is shown Fig. 5. The region where 1
c Rðox

oj jnumericalÞ
lies between 0.95 and 1 is shaded. Thus, in the shaded region, the dispersion relation is preserved to within 5%
of the exact value. The N scheme shows the best DRP property for the three compact schemes, as it has the
largest contiguously shaded area. The L scheme seems best among the explicit schemes. All the schemes are
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DRP compliant primarily in the low x Dt-low jh and high xDt-high jh region. With the addition of dissipa-
tion, the intermediate region become more DRP compliant for both compact and explicit schemes.

3.4. Stability analysis by the matrix method

In GKS stability theory the error is modeled as a Fourier mode:
u ¼ ûekt ð18Þ

where u is the error associated with the solution of equation 6. For any spatial discretization technique includ-
ing both inner and boundary schemes the spatial derivative u0 of u can be written in the following matrix form
Au0 ¼ Bu ð19Þ

where u0; u are respectively the vectors containing the nodal values and A, B are respectively the matrices of the
implicit and the explicit parts of the scheme. Substituting u ¼ ûekt and u0 ¼ A�1Bu into the wave equation (6),
the following eigen value problem is obtained
E � k
c

I
� �

û ¼ 0 ð20Þ
where k
c are the eigenvalues of E „ �A�1B. As positive real parts of k mean that the error will grow (c.f

Eq. (18)) exponentially, for a scheme to be stable, the eigenvalue spectrum of the matrix E should lie left
to the kr = 0 line in the (kr � ki) plane. That is
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maxðRðkiÞÞ < 0; i ¼ 1; . . . ; n ð21Þ

for a domain with n grid points.

Figs. 6 and 7 show the eigenvalues arising from the stability analysis of the various schemes. Fig. 6 shows
the eigen-values of the three compact schemes for a size of the matrix E (see Eq. (20)) of n = 100 and 50,
respectively in Fig. 6(a) and (b). All the eigenvalues lie in the left half-plane in the kr � ki plane, showing
the schemes are stable. The N scheme has the best stability property, with its spectrum showing the most neg-
ative values of kr. Numerical tests show that c = �1 gives the most favorable eigenvalue spectrum for the N
scheme. Fig. 7(a) and (b) show the spectra for the explicit schemes for n = 100 and 50, respectively. The TW
scheme, being a central scheme, has its spectrum nearest to the kr = 0 line, while L scheme gives the best spec-
trum from the viewpoint of numerical stability.

To summarize, the N scheme compares well with existing compact schemes in terms of numerical stability,
dispersion, anisotropy, DRP properties and introduces dissipation at (only) the highest wavenumbers, enhanc-
ing stability and reducing aliasing and spurious oscillations (see below).

4. Numerical experiments

Three numerical tests were carried out to evaluate the performance of the schemes in the light of the prop-
erties discussed above. It is difficult to judge all the properties of a scheme with a single test, so each test
emphasizes different aspects of the schemes.
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4.1. Linear wave propagation

In this problem [9] the first order linear 1-D wave equation with wave speed c = 0.05 is solved in the 0 6
x 6 1 domain with n = 100 grid points.
ou
ot
þ c

ou
ox
¼ 0
with a boundary condition u = 0 at x = 0. A cosine profile of periodicity 1
5

and amplitude 0.5 is the given initial
condition
uðx; t ¼ 0Þ ¼ 0:5 cosð10pxÞ 0 6 x 6 1
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The solution has a discontinuity which starts at x = 0 and, at t = 20, passes through the domain. A long
time integration has been performed to see the stability property of the schemes. Euler explicit time integration
with Dt = 10�4 is used to time march the discretized equations. The Courant number for this calculation is
C ¼ cDt

h ¼ 5� 10�4. The results are shown in Figs. 8–12 for t = 10, 25, 30, 60 and 100 respectively. Note that
Figs. 9–12 have differing scales, adjusted to the degree of spurious oscillations produced in each scheme after
the solution has passed through the domain. The results show that SLS and TW solutions leave numerical
oscillations in the domain long after the wave passes through it. This is because, being central schemes, they
have no dissipation to damp out the spurious oscillations caused by the discontinuity. The compact upwind
schemes having dissipation suppress these oscillations. Among these, the N scheme is somewhat better than
the Z scheme as can be seen from the results at t = 25, 30. There are no oscillations with either scheme after
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t = 30. Among the explicit schemes, the L scheme has the best stability property among all schemes compact
and explicit as seen from this test; the 5U scheme which has some dissipation, while the TW scheme suffers
significantly from spurious oscillations. The N scheme seems the best of the compact schemes considered,
and is overall second only to the explicit schemes.

4.2. Rotation of a sharp scalar cone

In this test, a sharp 2-D Gaussian profile is convected along a circle in a unit square domain. The convec-
tion-diffusion equation for a scalar / given by
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Fig. 10. Profile of the wave at t = 30.
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ot
þ u
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ox
þ v
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oy
¼ a

o2/
ox2
þ o2/

oy2

� �
is solved in the domain �0.5 6 x 6 0.5, �0.5 6 y 6 0.5 with 65 · 65 grid points. A sharp Gaussian profile is
given as the initial condition as
/ðx; y; t ¼ 0Þ ¼ a exp½�x½ðx� xcÞ2 þ ðy � ycÞ
2��
with a = 5, x = 1500, xc = � 0.25, yc = 0 which gives a peak value of 5. The velocity components, taken as
u = � y and v = x, are such that the initial scalar field rotates about the origin. The diffusive term in the trans-
port equation is switched off (a = 0), so the initial profile should be convected undistorted around the origin. A
4th order Runge–Kutta time integration method is used with Dt = 1 · 10�3 and results are shown at t = 2p
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Fig. 11. Profile of the wave at t = 60.
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when the initial profile completes a full rotation. As the initial profile has high wavenumber components this
test evaluates both the spectral resolution as well as the dissipation associated with the spatial discretization
scheme. At t = 2p, the minimum value of /(x,y), compared with its initial zero value, is a measure of the
numerical oscillation caused by the schemes, and the maximum value of /(x,y), reduced from its initial value
of 5, indicates the effect of dissipation of the schemes.

Figs. 13 and 14 respectively show the scalar field computed by the compact and explicit schemes, at t = 2p.
Fig. 13 shows that SLS scheme has the best resolution while N scheme is second-best. The N scheme has
less oscillation and dissipation compared to the Z scheme. Thus, although the N scheme has the same disper-
sion property as that of the SLS scheme, it cannot resolve the cone as well as the SLS scheme owing to the
dissipation it has at large wavenumbers. Fig. 14 shows the results for the three explicit schemes. Clearly the
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explicit schemes are inferior and have high numerical dissipation. The TW scheme suffers from numerical
oscillations, but is best in resolving the peak, nearly as well as the compact Z scheme. The L and the 5U
schemes, suppress oscillations but are poorer in resolving the peak.

4.3. Linear acoustics

Small amplitude disturbances superimposed on a uniform mean flow of density q0, pressure p0 and velocity
u0 in the x direction can be described by the two-dimensional linearized Euler equations. These equations are
non-dimensionalized as given in [20]:
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Fig. 13. The sharp cone after a complete rotation for the compact schemes.
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Fig. 14. The sharp cone after a complete rotation for the explicit schemes.
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and M ¼ u0

a0
is the free stream Mach number. The radiation and outflow boundary and initial conditions of

Tam and Webb [20] are used in this simulation.
The DRP time integration scheme of Tam and Webb [20] has been used in the present work to time-step the

governing Eqs. (22). This is a four level scheme given by
Unþ1 ’ Un þ Dt
X3

i¼0

ai
dU

dt

� �n�i
where a0 = 2.30255809, a1 = �2.49100760, a2 = 1.57434093, a3 = �0.38589142. The SLS and N schemes are
used as the inner scheme while a second order one-sided difference scheme [9] given by
f 01 ¼
1

2Dx
ð�3f 01 þ 4f 02 � f 03Þ and f 0N ¼

1

2Dx
ð3f 0N � 4f 0N�1 þ f 0N�2Þ
is used at the boundaries for better stability. A free-stream Mach number M = 0.5, and Dt = 0.05 with
201 · 201 grids are used in all the computations. Exact solutions given in [20] are used for comparison.

Fig. 15 shows the pressure waveform along the x axis at t = 30 and t = 65 respectively for the SLS and N
schemes. Both the schemes give a close match with the exact solution. The N scheme, being dissipative in
nature, falls slightly short of the sharp peak near the exit boundary (see Fig. 15(b)). Otherwise, there is no
x
-100 -50 0 50 100

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

SLS
N
exact

p

x
-100 -50 0 50 100

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

SLS
N
exact

p

a

b

Fig. 15. Pressure waveform along x axis, y = 0, at (a) t = 30 and (b) t = 65 for the compact schemes.
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Fig. 16. Pressure disturbance contours at (a) t = 0, (b) t = 30 and (c) t = 65, contours are shown for the maximum amplitude and 20%,
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discernible difference between the solutions of the two schemes. Thus the N scheme has very nearly the same
resolution property as the SLS scheme. Fig. 16 shows the spreading of the pressure disturbance from the initial
Gaussian waveform at two different times, as obtained with the N scheme. It is clear from the figure that no
numerical oscillation appears even for long time integration.

5. Conclusions

A high resolution and stable pentadiagonal upwind compact scheme is proposed. Numerical dispersion
constraints as well as asymptotic stability analysis is used to optimize the scheme. Comparison with previously
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proposed schemes show that the present scheme resolves high frequency components of the solution nearly as
well as its central counterparts while it has better stability property owing to added dissipation at (only) high
wavenumbers. The scheme also has excellent DRP property. Three numerical tests have been carried out with
the new scheme. The scheme very efficiently suppresses spurious oscillations as evident from a linear wave
propagation problem. Its numerical dispersion property and resolution of peaks is superior to previous
upwind schemes, both compact and explicit, as seen from the solution of the two-dimensional scalar transport
equation. The scheme is also seen to give accurate results for a linear acoustic problem.
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